Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 38(7): 1209-1222, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212361

RESUMO

BACKGROUND: Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that protects dopamine neurons and improves motor function in animal models of Parkinson's disease (PD). OBJECTIVE: The primary objectives of this study were to assess the safety and tolerability of both CDNF and the drug delivery system (DDS) in patients with PD of moderate severity. METHODS: We assessed the safety and tolerability of monthly intraputamenal CDNF infusions in patients with PD using an investigational DDS, a bone-anchored transcutaneous port connected to four catheters. This phase 1 trial was divided into a placebo-controlled, double-blind, 6-month main study followed by an active-treatment 6-month extension. Eligible patients, aged 35 to 75 years, had moderate idiopathic PD for 5 to 15 years and Hoehn and Yahr score ≤ 3 (off state). Seventeen patients were randomized to placebo (n = 6), 0.4 mg CDNF (n = 6), or 1.2 mg CDNF (n = 5). The primary endpoints were safety and tolerability of CDNF and DDS and catheter implantation accuracy. Secondary endpoints were measures of PD symptoms, including Unified Parkinson's Disease Rating Scale, and DDS patency and port stability. Exploratory endpoints included motor symptom assessment (PKG, Global Kinetics Pty Ltd, Melbourne, Australia) and positron emission tomography using dopamine transporter radioligand [18 F]FE-PE2I. RESULTS: Drug-related adverse events were mild to moderate with no difference between placebo and treatment groups. No severe adverse events were associated with the drug, and device delivery accuracy met specification. The severe adverse events recorded were associated with the infusion procedure and did not reoccur after procedural modification. There were no significant changes between placebo and CDNF treatment groups in secondary endpoints between baseline and the end of the main and extension studies. CONCLUSIONS: Intraputamenally administered CDNF was safe and well tolerated, and possible signs of biological response to the drug were observed in individual patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Dopamina , Fatores de Crescimento Neural/fisiologia , Fatores de Crescimento Neural/uso terapêutico , Neurônios Dopaminérgicos , Sistemas de Liberação de Medicamentos , Método Duplo-Cego
2.
J R Soc Interface ; 19(197): 20220557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514891

RESUMO

Computational modelling of the brain requires accurate representation of the tissues concerned. Mechanical testing has numerous challenges, in particular for low strain rates, like neurosurgery, where redistribution of fluid is biomechanically important. A finite-element (FE) model was generated in FEBio, incorporating a spring element/fluid-structure interaction representation of the pia-arachnoid complex (PAC). The model was loaded to represent gravity in prone and supine positions. Material parameter identification and sensitivity analysis were performed using statistical software, comparing the FE results to human in vivo measurements. Results for the brain Ogden parameters µ, α and k yielded values of 670 Pa, -19 and 148 kPa, supporting values reported in the literature. Values of the order of 1.2 MPa and 7.7 kPa were obtained for stiffness of the pia mater and out-of-plane tensile stiffness of the PAC, respectively. Positional brain shift was found to be non-rigid and largely driven by redistribution of fluid within the tissue. To the best of our knowledge, this is the first study using in vivo human data and gravitational loading in order to estimate the material properties of intracranial tissues. This model could now be applied to reduce the impact of positional brain shift in stereotactic neurosurgery.


Assuntos
Encéfalo , Pia-Máter , Humanos , Simulação por Computador , Análise de Elementos Finitos , Estresse Mecânico , Fenômenos Biomecânicos
3.
Int J Med Robot ; 17(4): e2257, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33817973

RESUMO

BACKGROUND: The brain of sheep has primarily been used in neuroscience as an animal model because of its similarity to the human brain, in particular if compared to other models such as the lissencephalic rodent brain. Their brain size also makes sheep an ideal model for the development of neurosurgical techniques using conventional clinical CT/MRI scanners and stereotactic systems for neurosurgery. METHODS: In this study, we present the design and validation of a new CT/MRI compatible head frame for the ovine model and software, with its assessment under two real clinical scenarios. RESULTS: Ex-vivo and in vivo trial results report an average linear displacement of the ovine head frame during conventional surgical procedures of 0.81 mm for ex-vivo trials and 0.68 mm for in vivo tests, respectively. CONCLUSIONS: These trial results demonstrate the robustness of the head frame system and its suitability to be employed within a real clinical setting.


Assuntos
Imageamento por Ressonância Magnética , Neurocirurgia , Animais , Humanos , Modelos Animais , Procedimentos Neurocirúrgicos , Ovinos , Tomografia Computadorizada por Raios X
4.
Oper Neurosurg (Hagerstown) ; 19(5): 530-538, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629477

RESUMO

BACKGROUND: Robotics in neurosurgery has demonstrated widening indications and rapid growth in recent years. Robotic precision and reproducibility are especially pertinent to the field of functional neurosurgery. Deep brain stimulation (DBS) requires accurate placement of electrodes in order to maximize efficacy and minimize side effects. In addition, asleep techniques demand clear target visualization and immediate on-table verification of accuracy. OBJECTIVE: To describe the surgical technique of asleep DBS surgery using the Neuro|MateTM Robot (Renishaw plc, Wotton-under-Edge, United Kingdom) and examine the accuracy of DBS lead placement in the subthalamic nucleus (STN) for the treatment of movement disorders. METHODS: A single-center retrospective review of 113 patients who underwent bilateral STN/Zona Incerta electrode placement was performed. Accuracy of implantation was assessed using 5 measurements, Euclidian distance, radial error, depth error, angular error, and shift error. RESULTS: A total of 226 planned vs actual electrode placements were analyzed. The mean 3-dimensional vector error calculated for 226 trajectories was 0.78 +/- 0.37 mm. The mean radial displacement off planned trajectory was 0.6 +/- 0.33 mm. The mean depth error, angular error, and shift error was 0.4 +/- 0.35 mm, 0.4 degrees, and 0.3 mm, respectively. CONCLUSION: This report details our institution's method for DBS lead placement in patients under general anaesthesia using anatomical targeting without microelectrode recordings or intraoperative test stimulation for the treatment of movement disorders. This is the largest reported dataset of accuracy results in DBS surgery performed asleep. This novel robot-assisted operative technique results in sub-millimeter accuracy in DBS electrode placement.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Robótica , Eletrodos Implantados , Humanos , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
J Parkinsons Dis ; 9(2): 301-313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30829619

RESUMO

BACKGROUND: Intraputamenal glial cell line-derived neurotrophic factor (GDNF), administered every 4 weeks to patients with moderately advanced Parkinson's disease, did not show significant clinical improvements against placebo at 40 weeks, although it significantly increased [18F]DOPA uptake throughout the entire putamen. OBJECTIVE: This open-label extension study explored the effects of continued (prior GDNF patients) or new (prior placebo patients) exposure to GDNF for another 40 weeks. METHODS: Using the infusion protocol of the parent study, all patients received GDNF without disclosing prior treatment allocations (GDNF or placebo). The primary outcome was the percentage change from baseline to Week 80 in the OFF state Unified Parkinson's Disease Rating Scale (UPDRS) motor score. RESULTS: All 41 parent study participants were enrolled. The primary outcome decreased by 26.7±20.7% in patients on GDNF for 80 weeks (GDNF/GDNF; N = 21) and 27.6±23.6% in patients on placebo for 40 weeks followed by GDNF for 40 weeks (placebo/GDNF, N = 20; least squares mean difference: 0.4%, 95% CI: -13.9, 14.6, p = 0.96). Secondary endpoints did not show significant differences between the groups at Week 80 either. Prespecified comparisons between GDNF/GDNF at Week 80 and placebo/GDNF at Week 40 showed significant differences for mean OFF state UPDRS motor (-9.6±6.7 vs. -3.8±4.2 points, p = 0.0108) and activities of daily living score (-6.9±5.5 vs. -1.0±3.7 points, p = 0.0003). No treatment-emergent safety concerns were identified. CONCLUSIONS: The aggregate study results, from the parent and open-label extension suggest that future testing with GDNF will likely require an 80- rather than a 40-week randomized treatment period and/or a higher dose.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Putamen/diagnóstico por imagem , Antiparkinsonianos/uso terapêutico , Di-Hidroxifenilalanina/análogos & derivados , Feminino , Radioisótopos de Flúor , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons , Putamen/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Brain ; 142(3): 512-525, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808022

RESUMO

We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35-75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2-3 and Unified Parkinson's Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: -4.9%, 95% CI: -16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Adulto , Idoso , Método Duplo-Cego , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Bombas de Infusão Implantáveis , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Efeito Placebo , Resultado do Tratamento
7.
J Neurosci Methods ; 308: 337-345, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179705

RESUMO

BACKGROUND: The design and use of convection-enhanced delivery catheters remains an active field as clinical trials have highlighted suboptimal distribution as a contributory factor to the failure of those studies. Recent studies indicate limitations and challenges in achieving target coverage using conventional point source delivery. NEW METHOD: The recessed step catheter(RSC), developed by this group, does not function as a point source delivery device, but instead uses 'controlled reflux' of the infusate to a flow inhibiting recess feature. Here we investigate a range of clinically useful step lengths in agarose gel and investigate proof-of-principle in vivo(n = 5). Infusion morphology was characterised in terms of length, width and distribution volume over a range of flow rates. RESULTS: For a fixed infusion volume, increases in catheter step length strongly correlated with increases in the length and volume of distribution (r>0.90, p < 0.001) whilst there were small reductions in the width of distribution (r<-0.62, p < 0.001). Step lengths below 6 mm produced spherical distributions while steps above 12 mm produced elongated distributions. Increasing peak flow rates resulted in significant reductions in distribution volume at each step length, and an increased risk of reflux beyond the step. Modifications to the infusion morphology using changes in step length were confirmed in vivo. CONCLUSIONS: The combination of the recessed step and the ability to adjust the step length with this catheter design make it highly suitable for tailoring the distribution volume of the infusate to meet specific morphological target volumes in the brain.


Assuntos
Encéfalo/fisiologia , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Animais , Cateterismo/instrumentação , Cateterismo/métodos , Catéteres , Convecção , Sus scrofa
8.
J Neurosurg Pediatr ; 22(3): 288-296, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856296

RESUMO

OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 µM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 µM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 µM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Convecção , Glioma/tratamento farmacológico , Panobinostat/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Proteínas de Ligação ao Cálcio/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Proteínas dos Microfilamentos/metabolismo , Panobinostat/farmacocinética , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Suínos , Espectrometria de Massas em Tandem , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arch Toxicol ; 92(7): 2353-2367, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785638

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson's disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.


Assuntos
Cerebelo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/toxicidade , Fármacos Neuroprotetores/toxicidade , Putamen/efeitos dos fármacos , Animais , Convecção , Esquema de Medicação , Sistemas de Liberação de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Bombas de Infusão Implantáveis , Macaca mulatta , Masculino , Fármacos Neuroprotetores/administração & dosagem , Nível de Efeito Adverso não Observado , Testes de Toxicidade Crônica
10.
Drug Deliv ; 23(1): 167-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24786643

RESUMO

CONTEXT: Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. OBJECTIVE: We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. MATERIALS AND METHODS: The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). RESULTS: All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. CONCLUSION: Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Administração Cutânea , Antineoplásicos/efeitos adversos , Carboplatina/efeitos adversos , Cateteres de Demora , Convecção , Epilepsia Generalizada/complicações , Feminino , Humanos , Infusões Intravenosas , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Robótica
11.
J Neurosci Methods ; 259: 47-56, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26617320

RESUMO

BACKGROUND: Intraparenchymal convection-enhanced delivery (CED) of therapeutics directly into the brain has long been endorsed as a medium through which meaningful concentrations of drug can be administered to patients, bypassing the blood brain barrier. The translation of the technology to clinic has been hindered by poor distribution not previously observed in smaller pre-clinical models. In part this was due to the larger volumes of target structures found in humans but principally the poor outcome was linked to reflux (backflow) of infusate proximally along the catheter track. Over the past 10 years, improvements have been made to the technology in the field which has led to a small number of commercially available devices containing reflux inhibiting features. NEW METHOD: While these devices are currently suitable for acute or short term use, several indications would benefit from longer term repeated, intermittent administration of therapeutics (Parkinson's, Alzheimer's, Amyotrophic lateral sclerosis, Brain tumours such as Glioblastoma Multiforme (GBM) and Diffuse intrinsic Pontine Glioma (DIPG), etc.). RESULTS: Despite the need for a chronically accessible platform for such indications, limited experience exists in this part of the field. COMPARISON WITH EXISTING METHOD(S): At the time of writing no commercially available clinical platform, indicated for chronic, intermittent or continuous delivery to the brain exists. CONCLUSIONS: Here we review the improvements that have been made to CED devices over recent years and current state of the art for chronic infusion systems.


Assuntos
Encéfalo , Catéteres , Sistemas de Liberação de Medicamentos/métodos , Convecção , Humanos
12.
PLoS One ; 10(7): e0132266, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186224

RESUMO

We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.


Assuntos
Carboplatina/uso terapêutico , Convecção , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Endocitose/efeitos dos fármacos , Glioblastoma/patologia , Hipocampo/patologia , Humanos , Masculino , Nanopartículas/toxicidade , Neurotoxinas/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Sus scrofa
13.
Am J Transl Res ; 6(2): 169-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489997

RESUMO

The main determinant of glioblastoma (GBM) resistance to temozolomide (TMZ) is thought to be O(6)-methylguanine-DNA methyltransferase (MGMT), which is a DNA-repair enzyme that removes alkyl groups from the O(6)-position of guanine. Previously, we reported that a MGMT-siRNA/cationic liposome complex exerted a clear synergistic antitumor effect in combination with TMZ. Translation to a clinical setting might be desirable for reinforcing the efficacy of TMZ therapy for GBM. In this study, we aim to evaluate the safety of MGMT-siRNA/cationic liposome complexes and determine whether the convection-enhanced delivery of these complexes is suitable for clinical use by undertaking preclinical testing in laboratory animals. No significant adverse events were observed in rats receiving infusions of MGMT-siRNA/cationic liposome complex directly into the brain with or without TMZ administration. A pig which received the complex administered by CED also showed no evidence of neurological dysfunction or histological abnormalities. However, the complex did not appear to achieve effective distribution by CED in either the rat or the porcine brain tissue. Considering these results together, we concluded that insufficient distribution of cationic liposomes was achieved for tumor treatment by CED.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...